Kiểm định Independent Sample T-Test trong SPSS

Trong bài viết trước mình đã hướng dẫn các bạn thực hiện kiểm định sự khác biệt trung bình trên SPSS bằng phương pháp One-way ANOVA đối với biến định tính từ 3 giá trị trở lên, nếu bạn chưa xem. Bài viết này mình sẽ hướng dẫn các bạn thực hiện kiểm định Independent Samples Test đối với các biến định tính có 2 giá trị.

Ý nghĩa của việc kiểm định sự khác biệt trung bình trong bài luận văn đó là giúp chúng ta xác định xem có sự khác biệt trung bình biến định lượng đối với các giá trị khác nhau của một biến định tính hay không. Ví dụ có sự khác nhau về sự hài lòng công việc giữa các nhân viên có mức lương khác nhau tại công ty hay không; có sự khác nhau về ý định mua hàng đối với những khách hàng có độ tuổi khác nhau hay không…

  • Independent Sample T-Test chúng ta sẽ áp dụng kiểm định sự khác biệt trung bình với trường hợp biến định tính có 2 giá trị. Ví dụ như biến giới tính (nam, nữ), biến thành phố (TPHCM, Hà Nội), biến vùng miền (Miền Bắc, Miền Nam)… Trường hợp biến định tính có 3 giá trị, chúng ta sẽ thực hiện 3 cặp so sánh (1-2, 1-3, 2-3). Tuy nhiên, việc so sánh từng cặp giá trị như vậy khá bất tiện và mất thời gian nếu số giá trị tăng lên 4, 5, 6…
  • ANOVA giúp chúng ta giải quyết trở ngại của Independent Sample T-Test. Phương pháp này giúp chúng ta so sánh trị trung bình của 3 nhóm trở lên. ANOVA có 3 phương pháp: ANOVA 1 chiều, ANOVA 2 chiều và MANOVA. Tuy nhiên, trong phạm vi tài liệu này chúng ta chỉ nói tới phương pháp ANOVA 1 chiều (One-Way ANOVA).

KIỂM ĐỊNH SỰ KHÁC BIỆT TRUNG BÌNH BẰNG PHƯƠNG PHÁP INDEPENDENT SAMPLE T-TEST

Ví dụ điển hình: 
Trên hình ảnh, các bạn có thể thấy biến giới tính có 2 value, như vậy như câu nói ban đầu của mình, 2 value thì sẽ dùng Independent Sample T – Test. Để dễ dàng cho việc trình bày, mình sẽ sử dụng biến Gioi_tinh (giới tính) là biến định tính và biến SHL (sự hài lòng) là biến định lượng.
Cách thực hiện kiểm định như sau. Vào Analyze > Compare Means > Independent Sample T-Test…
 
Ở giao diện được mở ra, các bạn đưa biến định lượng vào mục Test Variable (s), đưa biến định tính vào mục Grouping Variable. Sau đó nhấn vào mục Define Groups… ngay bên dưới.

Tại đây, các bạn sẽ phân nhóm giá trị ra. Biến giới tính của chúng ta có 2 value: 1 là nam, 2 là nữ, do vậy các bạn sẽ điền 2 số này vào 2 ô trống, không cần phải sắp xếp 1 đến 2, có thể điền 2, 1 cũng được, không sao cả nhé. Sau đó nhấn vào Continue.

Trở lại giao diện ban đầu, nhấn OK để xuất kết quả ra Output.
Chúng ta sẽ quan tâm tới bảng Independent Samples Test. Giá trị đầu tiên là sig của Levene’s Test (điểm màu vàng).
1/ Trường hợp sig nhỏ hơn 0.05
Nếu sig Levene’s Test nhỏ hơn 0.05 thì phương sai giữa 2 giới tính là khác nhau, chúng ta sẽ sử dụng giá trị sig T-Test màu hồng ở hàng Equal variances not assumed.
– Giá trị sig T-Test < 0.05 chúng ta kết luận: Có sự khác biệt có ý nghĩa thống kê về mức độ hài lòng của những đáp viên có giới tính khác nhau.
 
– Giá trị sig T-Test >= 0.05 chúng ta kết luận: Không có sự khác biệt có ý nghĩa thống kê về mức độ hài lòng của những đáp viên có giới tính khác nhau.
2/ Trường hợp sig lớn hơn hoặc bằng 0.05
Nếu sig Levene’s Test lớn hơn hoặc bằng 0.05 thì phương sai giữa 2 giới tính là không khác nhau, chúng ta sẽ sử dụng giá trị sig T-Test màu xanh ở hàng Equal variances assumed.
– Giá trị sig T-Test < 0.05 chúng ta kết luận: Có sự khác biệt có ý nghĩa thống kê về mức độ hài lòng của những đáp viên có giới tính khác nhau.
 
– Giá trị sig T-Test >= 0.05 chúng ta kết luận: Không có sự khác biệt có ý nghĩa thống kê về mức độ hài lòng của những đáp viên có giới tính khác nhau.