Ở mỗi dạng mô hình nhất định, cách diễn giải kết quả hệ số hồi quy sẽ khác nhau một chút. Có 6 dạng mô hình hồi quy tuyến tính các bạn nhé.
- Mô hình Log-linear hoặc double-log (log-log) là dạng mô hình biến phụ thuộc (biến Y) và biến độc lập (biến X) đều ở dạng log.
- Mô hình Log-lin là dạng mô hình mà biến phụ thuộc ở dạng log, còn biến độc lập có thể ở dạng log hoặc bình thường.
- Mô hình Lin-log là dạng mô hình mà biến phục thuộc ở dạng bình thường, còn một hay nhiều biến độc lập ở dạng log.
- Mô hình nghịch đảo (reciprocal model) là mô hình mà biến độc lập ở dạng nghịch đảo.
- Mô hình đa thức/lũy thừa là mô hình mà biến độc lập ở dạng lũy thừa
- Mô hình biến chuẩn (standardized variable regression)
- Mô hình Log-linear hoặc double log
Mô hình này có dạng như sau: LnYi = Con + B1LnX1i + B2LnX2i + ui
Con (hoặc C hoặc con_): Hệ số chặn của mô hình – Đại diện cho các biến không được đưa vào mô hình. Chúng ta có thể hiểu đơn giản là khi X = 0 thì Y = Con.
Ui: sai số của mô hình. Để đảm bảo mô hình hồi quy của chúng ta là ổn thì sai số này cũng phải thoải mãn được rất nhiều điều kiện đặc biệt khi phương pháp hồi quy của chúng ta là OLS. Chúng ta sẽ cùng tìm hiểu ở series bài về OLS nhé.
Vấn đề mà ad sẽ tập trung ở mỗi dạng mô hình là làm thế nào để giải thích được ý nghĩa của các beta (B1, B 2…). Trong mô hình này, các hệ số beta sẽ được giải thích là 1% thay đổi trong biến X sẽ dẫn đến B% thay đổi trong biến Y giả sử rằng các yếu tố khác không thay đổi.
Ví dụ: Biến Y là log của sản lượng (LnSanluong)
- Mô hình log-lin hoặc còn được gọi là semi-log
Mô hình này có dạng như sau:
LnYt = C + B1tXt + ut
Hệ số beta trong mô hình này sẽ được giải thích là 1 đơn vị thay đổi trong biến X sẽ dẫn đến B% thay đổi trong biến Y với các điều kiện khác không đổi. Trong thực tế ta nhân beta với 100 để tính toán % thay đổi hoặc là mức độ tăng trưởng.
Ví dụ: Biến Y là GDP, biến X là thời gian (năm)
Mô hình lin-logTheo kết quả này, ta giải thích hệ số hồi quy trên biến time là cứ mỗi năm trôi qua, GDP sẽ tăng thêm 3.15% với điều kiện các yếu tố khác không thay đổi.
Mô hình này sẽ có dạng như sau:
Yi = C + BiLnXi + ui
Với dạng mô hình này, bạn cần phải hết sức cẩn thận để giải thích các hệ số hồi quy nhé. Và đừng quên nhân hệ số hồi quy với 0.01 hoặc chia cho 100 trước khi giải thích.
Chúng ta có thể giải thích hệ số beta theo 2 cách:
1% thay đổi trong biến X sẽ dẫn đến beta x 0.01 đơn vị thay đổi trong biến Y với điều kiện các yếu tố khác không thay đổi.
Hoặc là 100% thay đổi trong biến X sẽ dẫn đến B đơn vị thay đổi trong biến Y với điều kiện các yếu tố khác không thay đổi.
Ví dụ: Biến Y là Chi phí cho thức ăn của gia đình và biến X là chi phí chung cho gia đình
Mô hình đảo ngược (Reciprocal model)Với hệ số hồi quy gần bằng -0.08) điều này có nghĩa là nếu chi phí chung của gia đình tăng lên 1% thì chi phí cho thức ăn sẽ giảm đi 0.0008 đơn vị. Hoặc là nếu tổng chi phí của gia đình tăng 100% thì chi phí cho thức ăn sẽ giảm đi 0.08 đơn vị.
Mô hình này có dạng như sau:
Yi = C + B1(1/Xi) + ui
Đối với dạng mô hình này, khi kết quả beta là dương thì phần trăm thay đổi của Y là âm và ngược lại, khi kết quả beta là âm thì Y sẽ thay đổi theo hướng tăng lên.
Ví dụ: Biến Y là chi phí cho thức ăn, còn biến X vẫn là tổng chi phí của gia đình. Tuy nhiên, mô hình bây giờ ở dạng đảo nghịch.
- Mô hình hồi quy lũy thừa
Mô hình này sẽ có dạng như sau:
Y = C + B1X + B2X2 + u
Đây là dạng phương trình bình phương hoặc lũy thừa 2 (second-degree polynomial). Nếu biến X có mũ lũy thừa là 3 thì mô hình được gọi là third-degree polynomial.
Mô hình này sẽ cho chúng ta biết về mức độ thay đổi của biến Y. Để tính được mức độ thay đổi này, ta phải lấy đạo hàm theo biến X của mô hình.
dY/dX = B1 + 2B2X
Ví dụ:
Mô hình hồi quy trên biến chuẩn hóaNhư vậy, cứ mỗi năm trôi qua, GDP tăng thêm 4.84 đơn vị (2.42×2) với các điều kiện khác không đổi.
Đây là mô hình mà cả biến Y và X đều được chuẩn hóa trước khi đưa vào hồi quy. Cách thức chuẩn hóa biến được thực hiện như sau:
Yi* = (Yi – YTB)/SY
Yi* là giá trị chuẩn hóa của Yi
YTB: Giá trị trung bình của Y
SY: Độ lệch chuẩn của Y
Hồi quy dựa trên biến chuẩn hóa giúp loại bỏ các vấn đề có thể phát sinh do đơn vị đo lường khác nhau giữa các biến. Đơn vị đo lường các biến được gọi là các đơn vị độ lệch chuẩn (standard deviation unit) Các hệ số hồi quy beta thu được từ mô hình này cũng được gọi là beta chuẩn hóa.
Ý nghĩa của hệ số beta được chuẩn hóa như sau: nếu biến X được chuẩn hóa tăng 1 đơn vị độ lệch chuẩn, biến Y được chuẩn hóa sẽ tăng beta* đơn vị độ lệch chuẩn.
Ngoài 6 mô hình ad giới thiệu ở trên, trên thực tế có thể xuất hiện các mô hình khác như là dạng log xuất hiện đối với các biến phụ thuộc hoặc biến độc lập ở các mô hình đảo nghịch hoặc mô hình lũy thừa.